среда, 26 сентября 2012 г.

Нужна ли современному танку современная защита?


 В современных условиях, когда прорыв тактической обороны усложняется угрозой применения по наступающей группировке ядерного и высокоточного оружия, «противоядерным» построением обороны, резким увеличением ее глубины, «наступательностью» целей и способов ведения оборонительного боя, все более необходимым становится достижение успеха с первой попытки.
При таком прорыве танки объективно остаются практически единственным эффективным средством поддержки пехоты.
Но современный танк в значительной степени утратил одну из своих важнейших функций — возможность борьбы с живой силой противника, превратившись по сути дела в истребитель танков. Встает проблема: каким должен быть современный танк и, в частности, как должна выглядеть его защита. Очевидно, что она будет определяться многими факторами как тактического, так и стратегического плана. Задача состоит в том, чтобы сформировать облик защиты, исходя из боевой задачи в самой общей постановке: выйти из района сосредоточения на передний край обороны противника с минимальными потерями и во взаимодействии с другими родами войск прорвать ее на всю глубину тактической зоны.
Для комплексов защиты бронетанковой техники (БТТ), действующей в составе различных войсковых формирований, характерен принцип «многоуровневости»:
  • коллективная защита — осуществляется силами ПВО, ракетных войск и артиллерии и т.п.
  • групповая защита — осуществляется комплексами групповой защиты – штатными единицами подразделений, действующих в районе сосредоточения, на марше и т.д.
  • собственная защита — предназначена для обеспечения непоражаемости БТТ от противотанковых средств, пропущенных групповыми средствами защиты
Для действий комплексов защиты БТТ характерно несколько зон:
  • «оперативная зона» — в пределах действия средств разведки и поражения разведывательно-ударных комплексов (РУК) глубиной до 200 км
  • «тактическая зона» — в пределах действия средств разведки и поражения разведывательно-огневых комплексов глубиной до 30-40 км
  • «зона непосредственного соприкосновения с противником — зона огневого боя» — глубиной до 7 км
Виды защиты, которыми должны быть обеспечены танки на разных этапах боевых действий, определяются заданными условиями (см. табл.). Если в прошлые годы предпочтение отдавалось лобовой баллистической защите (это, по моему мнению, продолжается во всех армиях мира и сейчас в силу определенной инерции), то с появлением современных РУК с высокоточными системами обнаружения и наведения танку практически невозможно выполнить боевую задачу еще до выхода на передний край, если он не оснащен средствами снижения заметности, а также защитой от поражения со стороны верхней полусферы и днища. В последнее время стала казаться не актуальной противорадиационная защита танка, но ядерное оружие никуда не делось, его арсеналы постоянно совершенствуются, значит, и этот фактор нельзя сбрасывать со счетов. Компьютерное моделирование показывает, что резко возросла значимость таких ослабленных зон в бронировании танка, как бортовые проекции, приамбразурные зоны, приборы наблюдения и прицеливания и т.д.
В «НИИ Стали» проведена оценка эффективности защиты танка, оснащенного комплексом средств снижения заметности, в типовых боевых ситуациях и эпизодах. Она показала следующее:
  • вероятность поражения объекта суббоеприпасами с радиометрическими датчиками снижается с 0,85 до 0,2, с тепловыми датчиками — с 0,7-0,8 до 0,04-0,01
  • потери от ударов авиации, в зависимости от вооружения, — на 50-70%
Таблица. Виды защиты танка на разных этапах боевых действий
Последовательность применения
Основные средства поражения
Зоны необходимой защиты
Средства достижения защищенности
200-30 км
Высокоточное оружие:
  • авиационные средства доставки;
  • оперативно-тактические разведывательно-ударные комплексы
Кассетные самонаводящиеся и самоприцеливающиеся боеприпасы
Кассетные неуправляемые авиабомбы малого калибра
Верхняя
полусфера
  • средства групповой и коллективной защиты
  • собственная защита образца: комплекс средств снижения заметности; баллистическая защита (БЗ) верхней полусферы
30-7 км
Высокоточное оружие:
  • авиационные средства доставки
  • РСЗО
  • артиллерийские средства доставки
Кассетные самонаводящиеся и самоприцеливающиеся боеприпасы
Кассетные неуправляемые авиабомбы малого калибра
Верхняя полусфера
  • средства групповой и коллективной защиты
  • собственная защита образца: комплекс средств снижения; БЗ верхней полусферы
-..-
Кассетные самонаводящиеся мины: противобортовые, противокрышные
Горизонтальные проекции 360°
Верхняя полусфера
  • собственная защита образца: комплекс средств снижения заметности; БЗ бортовых проекций; БЗ верхней полусферы
-..-
Кассетные противоднищевые мины
Днище
  • средства коллективной (инженерной) защиты;
  • собственная защита образца: система электромагнитной защиты; усиленная защита днища
7-0,5 км
Высокоточное оружие
Минометные самонаводящиеся боеприпасы;
пикирующие ПТУР
Верхняя полусфера
  • собственная защита образца: комплекс средств снижения заметности; БЗ верхней полусферы
Артиллерийские танковые
боеприпасы,
ПТУР
Средства обстрела в горизонтальной плоскости -
БПС, ПТУР
Лобовые проекции:
±22° по корпусу;
±30° по башне.
  • собственная защита образца: комплекс средств снижения заметности; БЗ лобовых и бортовых проекций
-..-
Поражение на пролете сверху
Верхняя полусфера
  • собственная защита образца: БЗ верхней полусферы
0,5-0 км
Легкие ПТУР и РПГ
Средства обстрела в горизонтальной плоскости
Горизонтальные проекции 360°
  • собственная защита образца
  • потери от РУК — на 70-80%
  • потери в бою танковой дивизии — на 80%
Таким образом, снижение вероятности обнаружения вооружения и военной техники ведет к резкому снижению эффективности применения противником высокоточного оружия. При этом стоимость работ по оснащению современных ВиВТ средствами снижения заметности значительно ниже, чем стоимость работ по совершенствованию техники радиоэлектронного противодействия.
Основные положения концепции создания малозаметных образцов ВиВТ таковы:
  • приоритет требований по заметности от постановки задачи до серийного производства и далее на протяжении всего жизненного цикла
  • комплексность и согласованность технических решений по формированию сигнатур образца с учетом возможностей средств разведки и наведения оружия, а также обеспечения основных тактико-технических требований к образцу
  • применение способов оптимизации компоновки образца с использованием критерия минимального объема, требуемого для размещения всех его основных частей, включая комплекс средств снижения заметности, навесное и вспомогательное оборудование
  • формирование внешнего облика образца из минимального количества элементов простой формы с образованием единой поверхности без разрывов и выступающих частей
  • применение специальных материалов и покрытий с высокими физическими и эксплуатационными характеристиками, в т.ч. изменяющих цвет и прозрачность (типа «хамелеон»)
  • создание ионизированных слоев воздуха над изделием для скрытия от обнаружения и наведения средств, работающих в радиолокационном диапазоне
  • использование аэрозолей, непрозрачных в диапазоне длин волн 0,2-0,8 мм и 1,2-16мм
  • разработка конструктивных и схемных решений, обеспечивающих максимальную степень закрытия проекций изделия материалами и покрытиями
  • разработка конструкций осветительных, наблюдательных приборов, различных излучающих систем и дополнительного вооружения, обеспечивающих возможность механизированного перевода в боевое положение и скрытие их в пассивном режиме
  • замена активных приборов ночного видения на тепловизионную технику
  • компоновка моторно-трансмиссионных отделений и агрегатных отсеков с продувкой наружным воздухом, экранированием и теплоизоляцией
Значительная часть указанных мероприятий отработана в «НИИ Стали» и реализована в отдельных изделиях. Так, хорошо известен наш радиопоглощающий и теплоизолирующий материал «Накидка», достаточно эффективно снижающий заметность, хотя очевидно, что он является только одним из ее компонентов. В настоящее время необходимо применить масштабные усилия по снижению заметности, так как ее дальнейшее игнорирование делает содержание танковых парков бессмысленным из-за их неспособности к ведению сколько-нибудь серьезных боевых действий.
 Теперь о баллистической защите. Уровни защищенности по сути дела диктуются тенденциями развития соответствующих поражающих средств: бронебойно-подкалиберных снарядов (БПС), кумулятивных боеприпасов и самоприцеливающихся боевых элементов типа «ударное ядро». Точность прогнозных характеристик играет большую роль, так как сохранение паритета по защищенности на каждом следующем этапе требует все большего напряжения сил и средств. Сейчас уже можно утверждать, что времена «пассивной», даже многослойной, брони ушли безвозвратно. 
 Противостоять поражающим элементам современных боеприпасов за счет простого поглощения их кинетической энергии, срабатывания и торможения при имеющихся ограничениях по массе и толщине бронирования далее не представляется возможным. В любом случае им должен наноситься деструктивный и дестабилизирующий ущерб активным контрвоздействием со стороны брони. По-видимому, дальнейшее совершенствование баллистической защиты от поражающих средств будет идти, с одной стороны, по пути более точного и дозированного деструктивного воздействия на поражающие элементы, с другой — по пути снижения разрушающих нагрузок на несущие конструкции бронирования.
На сегодняшний день в институте на основе принципиально новых устройств и боеприпасов динамической защиты (УДЗ) разработана универсальная защита лобовых проекций танка «Реликт», обладающая «противотандемными» свойствами и превосходящая по эффективности защиты от БПС серийную УДЗ типа «Контакт‑V» в 5-6 раз. Также обеспечена защита бортов и танка сверху от моноблочных и тандемных противотанковых гранат и легких ПТУР при обстреле по нормали. Отработана так называемая «электромагнитная защита» от мин и БЧ ПТУР с магнитометрическими взрывателями и коллективная, локальная и индивидуальная защита экипажа от вторичных осколков. Внедрены огнестойкие покрытия наружного оборудования, противостоящие воздействию напалма. В комплексе с основной защитой указанные меры значительно повышают живучесть танка на поле боя.
Сейчас достаточно сложно прогнозировать облик защиты танка на отдаленную перспективу. Известно, что в ведущих странах НАТО интенсивно ведутся исследования и разработки по созданию так называемого «электрического танка», в котором «электрическая» броня является органическим компонентом защиты.
Как альтернатива современным видам брони, требующим, по мнению зарубежных разработчиков, неоправданно большого увеличения массы танка, разрабатываются комплексы универсальной активной защиты.
Определенно можно утверждать лишь то, что время, когда мероприятия по защите можно было разрабатывать и внедрять независимо друг от друга, отдавая предпочтение броневой защите, прошло. Только комплексный учет всех факторов, влияющих на защиту и живучесть танка, включая общемашинные, позволяет удовлетворить современные требования. Необходим математический аппарат на новой методологической базе, который бы позволял сравнивать рассматриваемые виды защиты и компоновок с учетом большого количества как разноразмерных, так и безразмерных критериев. Такой подход обеспечивал бы при сравнении полный охват прогнозируемых технических характеристик, особенностей конструкций и эксплуатации, способов и условий применения, производственно-экономических, эргономических и других факторов, обусловливающих превосходство одного варианта машины над другим. Кроме того, он давал бы возможность гибко реагировать на изменение характера военных действий и способа их ведения, роли и места в них бронетанковой и военной техники. Над подобными проблемами и работают сейчас ведущие разработчики ОАО «НИИ Стали».
Валерий Григорян — Президент, директор по науке ОАО «НИИ Стали», доктор технических наук, профессор, академик РАРАН

Противоминная защита современных бронированных машин – пути решения и примеры реализации


 На протяжении сравнительно короткой истории бронетехники сухопутных войск, составляющей около ста лет, характер ведения боевых действий неоднократно менялся. Эти изменения носили кардинальный характер – от «позиционной» до «маневренной» войны и, далее, до локальных конфликтов и контртеррористических операций.
Именно характер предполагаемых боевых действий является определяющим при формировании требований к военной технике, соответственно, менялось и ранжирование основных свойств бронетанковой техники (БТТ). Классическое сочетание «огневая мощь – защита – подвижность» неоднократно обновлялось, дополнялось новыми компонентами. В настоящее время утвердилась точка зрения, согласно которой именно защищенности отдается приоритетное значение.
Значительное расширение номенклатуры и возможностей средств борьбы с бронетехникой сделало её живучесть важнейшим условием выполнения боевой задачи. Обеспечение живучести и, в более узком смысле - защищенности БТТ, строится на основе комплексного подхода. Не может быть универсального средства защиты от всех возможных современных угроз, поэтому на объекты бронетехники устанавливаются различные системы защиты, взаимно дополняющие друг друга. К настоящему времени созданы десятки конструкций, систем и комплексов защитного назначения, начиная от традиционной брони и заканчивая системами активной защиты. В этих условиях определение оптимального состава комплексной защиты является одной из важнейших задач, решение которой определяет в значительной степени совершенство разрабатываемой машины.
Решение задачи комплексирования средств защиты строится на основе анализа потенциальных угроз в предполагаемых условиях применения. И здесь следует вновь вернуться к тому, что характер боевых действий и, следовательно «представительный наряд противотанковых средств», сильно изменились по сравнению, скажем, со второй мировой войной. Наиболее опасными для бронетехники в настоящее время являются две противоположных, как по технологическому уровню, так и по способам применения, группы средств – высокоточное оружие (ВТО) с одной стороны и средства ближнего боя и мины – с другой. Если применение ВТО характерно для высокоразвитых стран и, как правило, приводит к достаточно быстрым результатам по уничтожению группировок бронетехники противника, то широчайшее применение мин, самодельных взрывных устройств (СВУ) и ручных противотанковых гранатометов со стороны различных вооруженных формирований носит длительный характер. Весьма показателен в этом смысле опыт боевых действий США в Ираке и Афганистане. Считая именно такие локальные конфликты наиболее характерными для современных условий, следует признать именно мины и средства ближнего боя наиболее опасными для бронетехники.
Уровень угрозы, которую представляют сейчас мины и самодельные взрывные устройства, хорошо иллюстрируют обобщенные данные по потерям техники армии США в различных вооруженных конфликтах (таблица 1).
Таблица 1
Конфликт
Потери техники от мин и СВУ (%)
Вторая мировая война
23
Корея
56
Вьетнам
70
Операция «Буря в пустыне» (Ирак)
59
Операция «Возрождение надежды» (Сомали)
60
Анализ динамики потерь позволяет однозначно утверждать, что противоминный компонент комплексной защиты бронетехники является сегодня особенно актуальным. Обеспечение противоминной защиты стало одной из главных проблем, стоящих перед разработчиками современных машин военного назначения.
Для определения путей обеспечения защиты в первую очередь следует оценить характеристики наиболее вероятных угроз – тип и мощность применяемых мин и взрывных устройств. В настоящее время создано большое количество эффективных противотанковых мин, отличающихся, в том числе, по принципу действия. Они могут оснащаться как взрывателями нажимного действия, так и многоканальными датчиками – магнитометрическими, сейсмическими, акустическими и др. Боевая часть может быть как простейшей фугасной, так и с поражающими элементами типа «ударное ядро», имеющими высокую бронепробивную способность.
Особенности рассматриваемых военных конфликтов не подразумевают наличия у противника «высокотехнологичных» мин. Опыт показывает, что в большинстве случаев применяются мины, а чаще СВУ, фугасного действия с радиоуправляемыми или контактными взрывателями. Пример самодельного взрывного устройства с простейшим взрывателем нажимного типа показан на рисунке.
В последнее время в Ираке и Афганистане зафиксированы случаи применения самодельных взрывных устройств с поражающими элементами типа «ударное ядро». Появление подобных устройств является ответом на повышение противоминной защиты бронетехники. Хотя по понятным причинам изготовить высококачественный и высокоэффективный кумулятивный узел «подручными средствами» невозможно, тем не менее, бронепробивная способность таких СВУ составляет до 40 мм стали. Этого вполне достаточно для надежного поражения легкобронной техники. 
 Мощность применяемых мин и СВУ зависит в значительной степени от доступности тех или иных взрывчатых веществ (ВВ), а также от возможностей по их закладке. Как правило, СВУ изготавливаются на основе промышленных взрывчатых веществ, обладающих при той же мощности гораздо большими весом и объемом, чем «боевые» ВВ. Сложности по скрытой закладке таких громоздких СВУ ограничивают их мощность. Данные по частоте применения мин и СВУ с различными тротиловыми эквивалентами, полученные в результате обобщения опыта боевых действий США за последние годы, приведены в таблице 2.
Таблица 2
Тротиловый эквивалент, кг
Количество применяемых мин (%)
0-1
0
1-2
3,5
2-3
2
3-4
0
4-5
10
5-6
17
6-7
24,5
7-8
29
8-9
3,5
9-10
5,5
> 10
5
Анализ представленных данных показывает, что более половины применяемых в наше время взрывных устройств имеют тротиловые эквиваленты 6…8 кг. Именно этот диапазон следует признать наиболее вероятным и, следовательно, наиболее опасным.
С точки зрения характера поражения различают типы подрыва под днищем машины и под колесом (гусеницей). Характерные поражения в этих случаях показаны на рисунке 2. При подрывах под днищем весьма вероятным является нарушение целостности (пролом) корпуса и поражение экипажа как за счет динамических нагрузок, превышающих предельно допустимые, так и за счет воздействия ударной волны и осколочного потока. При подрывах под колесом, как правило, утрачивается подвижность машины, но основным фактором поражения экипажа являются только динамические нагрузки.
Подходы к обеспечению противоминной защиты бронетехники в первую очередь определяются требованиями по защите экипажа и лишь во вторую – требованиями по сохранению работоспособности машины.
Сохранение работоспособности внутреннего оборудования и, как следствие, технической боеспособности, может быть обеспечено за счет снижения ударных нагрузок на данное оборудование и узлы его крепления. Наиболее критичными в этом плане являются узлы и агрегаты, закрепленные на днище машины или в пределах максимально возможного динамического прогиба днища при подрыве. Количество узлов крепления оборудования к днищу следует по возможности минимизировать, а сами эти узлы должны иметь энергопоглощающие элементы, снижающие динамические нагрузки. В каждом конкретном случае конструкция узлов крепления является оригинальной. В то же время, с точки зрения конструкции днища, для обеспечения работоспособности оборудования следует уменьшать динамический прогиб (увеличивать жесткость) и обеспечивать максимально возможное снижение динамических нагрузок, передаваемых на узлы крепления внутреннего оборудования. 
 Сохранение работоспособности экипажа может быть обеспечено при выполнении ряда условий.
Первым условием является минимизация динамических нагрузок, передаваемых при подрыве на узлы крепления кресел экипажа или десанта. В случае крепления кресел непосредственно на днище машины, на его узлы крепления будет передаваться практически вся энергия, сообщаемая этому участку днища, поэтому требуются чрезвычайно эффективные энергопоглощающие узлы кресел. Важно, что обеспечение защиты при большой мощности заряда становится сомнительным.
При креплении кресел к бортам или крыше корпуса, куда не распространяется зона локальных «взрывных» деформаций, обеспечивается передача на узлы крепления лишь той части динамических нагрузок, которые распространяются на корпус машины в целом. Учитывая значительную массу рассматриваемых машин, а также наличие таких факторов, как упругость подвески и частичное поглощение энергии за счет локальной деформации конструкции, ускорения, передаваемые на борта и крышу корпуса, будут сравнительно невелики.
Вторым условием сохранения работоспособности экипажа является, как и в случае внутреннего оборудования, исключение контакта с днищем при максимальном динамическом прогибе. Это условие может быть достигнуто чисто конструктивно, путем обеспечения необходимого зазора между днищем и полом обитаемого отделения. Повышение жесткости днища ведет к уменьшению данного необходимого зазора. Таким образом, работоспособность экипажа обеспечивается специальными амортизирующими креслами, закрепленными в местах, удаленных от зон возможного приложения взрывных нагрузок, а также путем исключения контакта экипажа с днищем при максимальном динамическом прогибе.
Примером комплексной реализации данных подходов к обеспечению противоминной защиты является сравнительно недавно появившийся класс бронеавтомобилей MRAP (Mine Resistant Ambush Protected - защищенные от подрыва и атак из засад), обладающих повышенной стойкостью как к воздействию взрывных устройств, так и к огню стрелкового оружия. Следует отдать должное проявленной США высочайшей оперативности, с которой были организованы разработки и поставки в больших количествах подобных автомобилей в Ирак и Афганистан. Выполнение данной задачи было поручено довольно большому количеству фирм - Force Protection, BAE Systems, Armor Holdings, Oshkosh Trucks/Ceradyne, Navistar International и др. Это предопределило значительную разунификацию парка MRAP, но зато позволило в короткие сроки обеспечить их поставки в необходимых количествах.
Общими особенностями подхода к обеспечению противоминной защиты на автомобилях данных фирм являются рациональная V-образная форма нижней части корпуса, повышенная прочность днища за счет применения стальных броневых листов большой толщины и обязательное применение специальных энергопоглощающих сидений. Защита обеспечивается только для обитаемого модуля. Все, что находится «снаружи», в том числе моторный отсек, либо не имеет защиты вовсе, либо защищено слабо. Эта особенность позволяет выдерживать подрыв достаточно мощных СВУ за счет легкого разрушения «наружных» отсеков и узлов с минимизацией передачи воздействия на обитаемый модуль (рисунок 3). Реализуются подобные решения как на тяжелых машинах, например, Ranger фирмы Universal Engineering, так и на легких, в том числе - IVECO 65E19WM. При очевидной рациональности в условиях ограниченной массы, данное техническое решение все-таки не обеспечивает высокой живучести и сохранения подвижности при относительно слабых взрывных устройствах, а также пулевом обстреле.
Простым и надежным, но не самым рациональным с точки зрения массы, является применение толстолистовой стали для защиты днища. Более легкие структуры днища с энергопоглощающими элементами, например, шестигранными или прямоугольными трубчатыми деталями, применяются пока весьма ограниченно.
 К классу MRAP относятся и автомобили семейства «Тайфун», разработанные в России. В данном семействе автомобилей реализованы практически все известные в настоящее время технические решения по обеспечению противоминной защиты:
  • V-образная форма днища
  • многослойное днище обитаемого отделения, противоминный поддон
  • внутренний пол на упругих элементах
  • расположение экипажа на максимально возможном удалении от наиболее вероятного места подрыва
  • защищенные от прямого воздействия оружия агрегаты и системы
  • энергопоглощающие сиденья с ремнями безопасности и подголовниками 
Работа над семейством «Тайфун» является примером кооперации и комплексного подхода к решению задачи обеспечения защищенности в целом и противоминной стойкости в частности. Головным разработчиком защиты автомобилей, разрабатываемых автомобильным заводом «Урал», является ОАО «НИИ Стали». Разработка общей конфигурации и компоновки кабин и функциональных модулей, а также энергопоглощающих сидений была выполнена ОАО «Евротехпласт». Для выполнения численного моделирования воздействия взрыва на конструкцию автомобиля были привлечены специалисты ООО «Саровский Инженерный Центр». 
 Сложившийся подход к разработке противоминной защиты включает несколько стадий. На первом этапе выполняется численное моделирование воздействия продуктов взрыва на эскизно проработанную конструкцию. Далее уточняется внешняя конфигурация и общая конструкция днища, противоминных поддонов и отрабатывается их структура. Отработка структур также производится сначала численными методами, а затем испытывается на фрагментах реальным подрывом.
 На рисунке 5 приведены примеры численного моделирования воздействия взрыва на различные структуры противоминных конструкций, выполненные ОАО «НИИ Стали» в рамках работ над новыми изделиями. После завершения детальной разработки конструкции машины, моделируются различные варианты её подрыва.
На рисунке 6 показаны результаты численного моделирования подрыва автомобиля «Тайфун», выполненные Саровским инженерным центром. По итогам расчетов производятся необходимые доработки, результаты которых проверяется уже реальными испытаниями на подрыв. Такая многоступенчатость разработки позволяет оценивать правильность технических решений на различных стадиях проектирования и в целом снизить риск конструктивных ошибок, выбрать наиболее рациональное решение.
Общей чертой разрабатываемых современных машин является модульность большинства систем, в том числе защитных. Это позволяет адаптировать новые машины к предполагаемым условиям применения и, наоборот, при отсутствии каких-либо угроз избегать неоправданных затрат. В отношении противоминной защиты такая модульность позволяет оперативно реагировать на возможные изменения типов и мощностей применяемых взрывных устройств и с минимальными затратами эффективно решать одну из главных проблем защиты современной бронетехники.
Таким образом, по рассматриваемой проблеме можно сделать следующие выводы:
  • одну из самых серьезных угроз для бронетехники в наиболее типичных сейчас локальных конфликтах представляют мины и СВУ, на долю которых приходится более половины потерь техники
  • для обеспечения высокой противоминной защиты бронетехники требуется комплексный подход, включающий в себя как компоновочные, так и конструктивные, «схемные» решения, а также применение специального оборудования, в частности энергопоглощающих сидений экипажа
  • образцы бронетехники, имеющие высокую противоминную защиту, уже созданы и активно используются в современных конфликтах, что позволяет анализировать опыт их боевого применения и определять пути дальнейшего совершенствования их конструкции
Автор: Алексей Михайлович Кимаев, начальник отдела ОАО «НИИ Стали»

40-летний юбилей конструкторское бюро НТИИМ отметит Всероссийской конференцией

  Более 50 делегатов 35 российских оборонных предприятий, испытательных полигонов, научно-исследовательских и учебных институтов обсудят направления развития систем вооружения страны.
С 26 по 28 сентября на базе Нижнетагильского института испытания металлов проводится IX Всероссийская научно-техническая конференция «Проектирование систем вооружения и измерительных комплексов», посвященная 40-летию специального конструкторского бюро измерительной аппаратуры ФКП НТИИМ.
Для участников конференции подготовлена насыщенная деловая программа. Планируется заседание совета молодых ученых регионального Уральско-Сибирского центра Российской академии ракетных и артиллерийских наук, пленарное заседание и работа по тематическим секциям: проектирование средств поражения, проблемы полигонных испытаний боеприпасов и вооружения, проблемы разработки порохов и зарядов. Также вопросы подготовки кадров для ОПК региона обсудят участники координационного совета.
В рамках конференции запланировано посещение специального конструкторского бюро измерительной аппаратуры, в том числе единственного в России научно-производственного комплекса по разработке и производству крешерных приборов и пьезокварцевых датчиков, цеха сборочно-испытательного производства, научно-образовательного центра. Гостям покажут лабораторную базу НТИИМ, которая служит не только для решения производственных задач, но и для научно-исследовательских работ и ведения образовательной программы.
А 27 сентября в Доме культуры «Салют» состоится торжественный вечер, посвященный 40-летию конструкторского бюро.
Добавим, что конструкторское бюро выполняет весь цикл работ по созданию и производству полигонной измерительной аппаратуры. С 2009 года институт считается головной организацией по созданию и поставкам полигонных контрольно-измерительных и регистрирующих приборов и систем. На его базе расположены уникальные для страны научно-производственные комплексы по созданию средств измерений высоких импульсных давлений, радиолокационных систем и по разработке оптико-электронных и телевизионных высокоскоростных станций. Аппаратный комплекс специального конструкторского бюро удостоен ряда наград. А его сотрудники неоднократно становились лауреатами государственных премий.

Департамент информационной политики губернатора Свердловской области